3.10.19 \(\int \frac {x^3}{(c x^2)^{3/2} (a+b x)^2} \, dx\) [919]

Optimal. Leaf size=25 \[ -\frac {x}{b c \sqrt {c x^2} (a+b x)} \]

[Out]

-x/b/c/(b*x+a)/(c*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {15, 32} \begin {gather*} -\frac {x}{b c \sqrt {c x^2} (a+b x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/((c*x^2)^(3/2)*(a + b*x)^2),x]

[Out]

-(x/(b*c*Sqrt[c*x^2]*(a + b*x)))

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[a^IntPart[m]*((a*x^n)^FracPart[m]/x^(n*FracPart[m])), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (c x^2\right )^{3/2} (a+b x)^2} \, dx &=\frac {x \int \frac {1}{(a+b x)^2} \, dx}{c \sqrt {c x^2}}\\ &=-\frac {x}{b c \sqrt {c x^2} (a+b x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 24, normalized size = 0.96 \begin {gather*} -\frac {x^3}{b \left (c x^2\right )^{3/2} (a+b x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/((c*x^2)^(3/2)*(a + b*x)^2),x]

[Out]

-(x^3/(b*(c*x^2)^(3/2)*(a + b*x)))

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 23, normalized size = 0.92

method result size
gosper \(-\frac {x^{3}}{\left (b x +a \right ) b \left (c \,x^{2}\right )^{\frac {3}{2}}}\) \(23\)
default \(-\frac {x^{3}}{\left (b x +a \right ) b \left (c \,x^{2}\right )^{\frac {3}{2}}}\) \(23\)
risch \(-\frac {x}{b c \left (b x +a \right ) \sqrt {c \,x^{2}}}\) \(24\)
trager \(\frac {\left (-1+x \right ) \sqrt {c \,x^{2}}}{c^{2} \left (b x +a \right ) \left (a +b \right ) x}\) \(30\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(c*x^2)^(3/2)/(b*x+a)^2,x,method=_RETURNVERBOSE)

[Out]

-1/(b*x+a)/b*x^3/(c*x^2)^(3/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 47 vs. \(2 (23) = 46\).
time = 0.29, size = 47, normalized size = 1.88 \begin {gather*} \frac {a}{\sqrt {c x^{2}} b^{3} c x + \sqrt {c x^{2}} a b^{2} c} - \frac {1}{\sqrt {c x^{2}} b^{2} c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2)^(3/2)/(b*x+a)^2,x, algorithm="maxima")

[Out]

a/(sqrt(c*x^2)*b^3*c*x + sqrt(c*x^2)*a*b^2*c) - 1/(sqrt(c*x^2)*b^2*c)

________________________________________________________________________________________

Fricas [A]
time = 0.46, size = 29, normalized size = 1.16 \begin {gather*} -\frac {\sqrt {c x^{2}}}{b^{2} c^{2} x^{2} + a b c^{2} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2)^(3/2)/(b*x+a)^2,x, algorithm="fricas")

[Out]

-sqrt(c*x^2)/(b^2*c^2*x^2 + a*b*c^2*x)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 73 vs. \(2 (19) = 38\).
time = 0.55, size = 73, normalized size = 2.92 \begin {gather*} \begin {cases} \frac {\tilde {\infty } x^{2}}{\left (c x^{2}\right )^{\frac {3}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {\tilde {\infty } x^{4}}{\left (c x^{2}\right )^{\frac {3}{2}}} & \text {for}\: a = - b x \\\frac {x^{4}}{a^{2} \left (c x^{2}\right )^{\frac {3}{2}}} & \text {for}\: b = 0 \\- \frac {x^{3}}{a b \left (c x^{2}\right )^{\frac {3}{2}} + b^{2} x \left (c x^{2}\right )^{\frac {3}{2}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(c*x**2)**(3/2)/(b*x+a)**2,x)

[Out]

Piecewise((zoo*x**2/(c*x**2)**(3/2), Eq(a, 0) & Eq(b, 0)), (zoo*x**4/(c*x**2)**(3/2), Eq(a, -b*x)), (x**4/(a**
2*(c*x**2)**(3/2)), Eq(b, 0)), (-x**3/(a*b*(c*x**2)**(3/2) + b**2*x*(c*x**2)**(3/2)), True))

________________________________________________________________________________________

Giac [A]
time = 1.16, size = 36, normalized size = 1.44 \begin {gather*} \frac {\frac {\mathrm {sgn}\left (x\right )}{a b \sqrt {c}} - \frac {1}{{\left (b x + a\right )} b \sqrt {c} \mathrm {sgn}\left (x\right )}}{c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2)^(3/2)/(b*x+a)^2,x, algorithm="giac")

[Out]

(sgn(x)/(a*b*sqrt(c)) - 1/((b*x + a)*b*sqrt(c)*sgn(x)))/c

________________________________________________________________________________________

Mupad [B]
time = 0.17, size = 25, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {c\,x^2}}{b\,c^2\,x\,\left (a+b\,x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((c*x^2)^(3/2)*(a + b*x)^2),x)

[Out]

-(c*x^2)^(1/2)/(b*c^2*x*(a + b*x))

________________________________________________________________________________________